Skip to main content
Open In ColabOpen on GitHub

FalkorDBVectorStore

FalkorDB is an open-source graph database with integrated support for vector similarity search

it supports:

  • approximate nearest neighbor search
  • Euclidean similarity & Cosine Similarity
  • Hybrid search combining vector and keyword searches

This notebook shows how to use the FalkorDB vector index (FalkorDB)

See the installation instruction

Setup

# Pip install necessary package
%pip install --upgrade falkordb
%pip install --upgrade tiktoken
%pip install --upgrade langchain langchain_huggingface
Requirement already satisfied: falkordb in c:\users\dell\desktop\langchain\.venv\lib\site-packages (1.0.10)Note: you may need to restart the kernel to use updated packages.

Requirement already satisfied: redis<6.0.0,>=5.0.1 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from falkordb) (5.2.0)
Requirement already satisfied: async-timeout>=4.0.3 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from redis<6.0.0,>=5.0.1->falkordb) (4.0.3)
Requirement already satisfied: tiktoken in c:\users\dell\desktop\langchain\.venv\lib\site-packages (0.8.0)
Requirement already satisfied: regex>=2022.1.18 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from tiktoken) (2024.11.6)
Requirement already satisfied: requests>=2.26.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from tiktoken) (2.32.3)
Requirement already satisfied: charset-normalizer<4,>=2 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from requests>=2.26.0->tiktoken) (3.4.0)
Requirement already satisfied: idna<4,>=2.5 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from requests>=2.26.0->tiktoken) (3.10)
Requirement already satisfied: urllib3<3,>=1.21.1 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from requests>=2.26.0->tiktoken) (1.26.20)
Requirement already satisfied: certifi>=2017.4.17 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from requests>=2.26.0->tiktoken) (2024.8.30)
Note: you may need to restart the kernel to use updated packages.
Requirement already satisfied: langchain in c:\users\dell\desktop\langchain\.venv\lib\site-packages (0.3.9)Note: you may need to restart the kernel to use updated packages.

Requirement already satisfied: langchain_huggingface in c:\users\dell\desktop\langchain\.venv\lib\site-packages (0.1.2)
Requirement already satisfied: PyYAML>=5.3 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langchain) (6.0.2)
Requirement already satisfied: SQLAlchemy<3,>=1.4 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langchain) (2.0.36)
Requirement already satisfied: aiohttp<4.0.0,>=3.8.3 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langchain) (3.11.8)
Requirement already satisfied: async-timeout<5.0.0,>=4.0.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langchain) (4.0.3)
Requirement already satisfied: langchain-core<0.4.0,>=0.3.21 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langchain) (0.3.21)
Requirement already satisfied: langchain-text-splitters<0.4.0,>=0.3.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langchain) (0.3.2)
Requirement already satisfied: langsmith<0.2.0,>=0.1.17 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langchain) (0.1.147)
Requirement already satisfied: numpy<2,>=1.22.4 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langchain) (1.26.4)
Requirement already satisfied: pydantic<3.0.0,>=2.7.4 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langchain) (2.9.2)
Requirement already satisfied: requests<3,>=2 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langchain) (2.32.3)
Requirement already satisfied: tenacity!=8.4.0,<10,>=8.1.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langchain) (9.0.0)
Requirement already satisfied: huggingface-hub>=0.23.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langchain_huggingface) (0.26.3)
Requirement already satisfied: sentence-transformers>=2.6.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langchain_huggingface) (3.3.1)
Requirement already satisfied: tokenizers>=0.19.1 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langchain_huggingface) (0.20.3)
Requirement already satisfied: transformers>=4.39.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langchain_huggingface) (4.46.3)
Requirement already satisfied: aiohappyeyeballs>=2.3.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (2.4.4)
Requirement already satisfied: aiosignal>=1.1.2 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (1.3.1)
Requirement already satisfied: attrs>=17.3.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (24.2.0)
Requirement already satisfied: frozenlist>=1.1.1 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (1.5.0)
Requirement already satisfied: multidict<7.0,>=4.5 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (6.1.0)
Requirement already satisfied: propcache>=0.2.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (0.2.0)
Requirement already satisfied: yarl<2.0,>=1.17.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from aiohttp<4.0.0,>=3.8.3->langchain) (1.18.0)
Requirement already satisfied: filelock in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from huggingface-hub>=0.23.0->langchain_huggingface) (3.16.1)
Requirement already satisfied: fsspec>=2023.5.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from huggingface-hub>=0.23.0->langchain_huggingface) (2024.10.0)
Requirement already satisfied: packaging>=20.9 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from huggingface-hub>=0.23.0->langchain_huggingface) (24.2)
Requirement already satisfied: tqdm>=4.42.1 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from huggingface-hub>=0.23.0->langchain_huggingface) (4.67.1)
Requirement already satisfied: typing-extensions>=3.7.4.3 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from huggingface-hub>=0.23.0->langchain_huggingface) (4.12.2)
Requirement already satisfied: jsonpatch<2.0,>=1.33 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langchain-core<0.4.0,>=0.3.21->langchain) (1.33)
Requirement already satisfied: httpx<1,>=0.23.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langsmith<0.2.0,>=0.1.17->langchain) (0.27.2)
Requirement already satisfied: orjson<4.0.0,>=3.9.14 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langsmith<0.2.0,>=0.1.17->langchain) (3.10.12)
Requirement already satisfied: requests-toolbelt<2.0.0,>=1.0.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from langsmith<0.2.0,>=0.1.17->langchain) (1.0.0)
Requirement already satisfied: annotated-types>=0.6.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from pydantic<3.0.0,>=2.7.4->langchain) (0.7.0)
Requirement already satisfied: pydantic-core==2.23.4 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from pydantic<3.0.0,>=2.7.4->langchain) (2.23.4)
Requirement already satisfied: charset-normalizer<4,>=2 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from requests<3,>=2->langchain) (3.4.0)
Requirement already satisfied: idna<4,>=2.5 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from requests<3,>=2->langchain) (3.10)
Requirement already satisfied: urllib3<3,>=1.21.1 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from requests<3,>=2->langchain) (1.26.20)
Requirement already satisfied: certifi>=2017.4.17 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from requests<3,>=2->langchain) (2024.8.30)
Requirement already satisfied: torch>=1.11.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from sentence-transformers>=2.6.0->langchain_huggingface) (2.5.1)
Requirement already satisfied: scikit-learn in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from sentence-transformers>=2.6.0->langchain_huggingface) (1.5.2)
Requirement already satisfied: scipy in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from sentence-transformers>=2.6.0->langchain_huggingface) (1.13.1)
Requirement already satisfied: Pillow in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from sentence-transformers>=2.6.0->langchain_huggingface) (11.0.0)
Requirement already satisfied: greenlet!=0.4.17 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from SQLAlchemy<3,>=1.4->langchain) (3.1.1)
Requirement already satisfied: regex!=2019.12.17 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from transformers>=4.39.0->langchain_huggingface) (2024.11.6)
Requirement already satisfied: safetensors>=0.4.1 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from transformers>=4.39.0->langchain_huggingface) (0.4.5)
Requirement already satisfied: anyio in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from httpx<1,>=0.23.0->langsmith<0.2.0,>=0.1.17->langchain) (4.6.2.post1)
Requirement already satisfied: httpcore==1.* in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from httpx<1,>=0.23.0->langsmith<0.2.0,>=0.1.17->langchain) (1.0.7)
Requirement already satisfied: sniffio in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from httpx<1,>=0.23.0->langsmith<0.2.0,>=0.1.17->langchain) (1.3.1)
Requirement already satisfied: h11<0.15,>=0.13 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from httpcore==1.*->httpx<1,>=0.23.0->langsmith<0.2.0,>=0.1.17->langchain) (0.14.0)
Requirement already satisfied: jsonpointer>=1.9 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from jsonpatch<2.0,>=1.33->langchain-core<0.4.0,>=0.3.21->langchain) (3.0.0)
Requirement already satisfied: networkx in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from torch>=1.11.0->sentence-transformers>=2.6.0->langchain_huggingface) (3.2.1)
Requirement already satisfied: jinja2 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from torch>=1.11.0->sentence-transformers>=2.6.0->langchain_huggingface) (3.1.4)
Requirement already satisfied: sympy==1.13.1 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from torch>=1.11.0->sentence-transformers>=2.6.0->langchain_huggingface) (1.13.1)
Requirement already satisfied: mpmath<1.4,>=1.1.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from sympy==1.13.1->torch>=1.11.0->sentence-transformers>=2.6.0->langchain_huggingface) (1.3.0)
Requirement already satisfied: colorama in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from tqdm>=4.42.1->huggingface-hub>=0.23.0->langchain_huggingface) (0.4.6)
Requirement already satisfied: joblib>=1.2.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from scikit-learn->sentence-transformers>=2.6.0->langchain_huggingface) (1.4.2)
Requirement already satisfied: threadpoolctl>=3.1.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from scikit-learn->sentence-transformers>=2.6.0->langchain_huggingface) (3.5.0)
Requirement already satisfied: exceptiongroup>=1.0.2 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from anyio->httpx<1,>=0.23.0->langsmith<0.2.0,>=0.1.17->langchain) (1.2.2)
Requirement already satisfied: MarkupSafe>=2.0 in c:\users\dell\desktop\langchain\.venv\lib\site-packages (from jinja2->torch>=1.11.0->sentence-transformers>=2.6.0->langchain_huggingface) (3.0.2)

Credentials

We want to use HuggingFace so we have to get the HuggingFace API Key

import getpass
import os

if "HUGGINGFACE_API_KEY" not in os.environ:
os.environ["HUGGINGFACE_API_KEY"] = getpass.getpass("HuggingFace API Key:")

If you want to get automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:

# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"

Initialization

from langchain_community.vectorstores.falkordb_vector import FalkorDBVector
from langchain_core.documents import Document
from langchain_huggingface import HuggingFaceEmbeddings

You can use FalkorDBVector locally with docker. See installation instruction

host = "localhost"
port = 6379

Or you can use FalkorDBVector with FalkorDB Cloud

# E.g
# host = "r-6jissuruar.instance-zwb082gpf.hc-v8noonp0c.europe-west1.gcp.f2e0a955bb84.cloud"
# port = 62471
# username = "falkordb" # SET ON FALKORDB CLOUD
# password = "password" # SET ON FALKORDB CLOUD
vector_store = FalkorDBVector(host=host, port=port, embedding=HuggingFaceEmbeddings())

Manage vector store

Add items to vector store

from langchain_core.documents import Document

document_1 = Document(page_content="foo", metadata={"source": "https://example.com"})

document_2 = Document(page_content="bar", metadata={"source": "https://example.com"})

document_3 = Document(page_content="baz", metadata={"source": "https://example.com"})

documents = [document_1, document_2, document_3]

vector_store.add_documents(documents=documents, ids=["1", "2", "3"])
API Reference:Document
['1', '2', '3']

Update items in vector store

updated_document = Document(
page_content="qux", metadata={"source": "https://another-example.com"}
)

vector_store.update_documents(document_id="1", document=updated_document)

Delete items from vector store

vector_store.delete(ids=["3"])

Query vector store

Once your vector store has been created and the relevant documents have been added you will most likely wish to query it during the running of your chain or agent.

Query directly

Performing a simple similarity search can be done as follows:

results = vector_store.similarity_search(
query="thud", k=1, filter={"source": "https://another-example.com"}
)
for doc in results:
print(f"* {doc.page_content} [{doc.metadata}]")
* qux [{'text': 'qux', 'id': '1', 'source': 'https://another-example.com'}]

If you want to execute a similarity search and receive the corresponding scores you can run:

results = vector_store.similarity_search_with_score(query="bar")
for doc, score in results:
print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]")
* [SIM=0.000001] bar [{'text': 'bar', 'id': '2', 'source': 'https://example.com'}]

Query by turning into retriever

You can also transform the vector store into a retriever for easier usage in your chains.

retriever = vector_store.as_retriever(search_type="mmr", search_kwargs={"k": 1})
retriever.invoke("thud")
[Document(metadata={'text': 'qux', 'id': '1', 'source': 'https://another-example.com'}, page_content='qux')]

Usage for retrieval-augmented generation

For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:

API reference

For detailed documentation of all FalkorDBVector features and configurations head to the API reference: https://python.langchain.com/api_reference/community/vectorstores/langchain_community.vectorstores.falkordb_vector.FalkorDBVector.html


Was this page helpful?